2.4 Circular Waveguide
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Figure 2.5: A circular waveguide of radius

For a circular waveguide of radius(Fig. 2.5), we can perform the same sequence of steps in cylindrical
coordinates as we did in rectangular coordinates to find the transverse field components in terms of the
longitudinal (i.e.E., H,) components. In cylindrical coordinates, the transverse field is

Er = pE, + 0E, Hr = pH, + ¢Hy (2.66)

Using this in Maxwell’'s equations (where the curl is applied in cylindrical coordinates) leads to

_j (wedE. 0H,  —j (,0E. wudH,

Mo = 32 (,0 o6 @p> (2:67) B = g (6 o~ p 06 ) @
_ —j( OE. BoH. _ —j (BOE.  0H.

Hy = - <we T a¢> (2.68) By = 3 (p by 8p) (2.70)

wherek? = k? — 3% as before. Please note that here (as well as in rectangular waveguide derivation), we
have assumed /%% propagation. Foet77* propagation, we replagg@with — 3.

2.4.1 TE Modes

We don’t need to prove that the wave travelsas®* again since the differentiation infor the Laplacian
is the same in cylindrical coordinates as it is in rectangular coordinatg®4?). However, thep and ¢
derivatives of the Laplacian are different than thendy derivatives. The wave equation féf, is

P 10
dp* ~ pIp
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(V2+EHH, = 0 (2.71)
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Using the separation of variables approach, wéllgtp, ¢, z) = R(p)P(¢)e 77, and obtain

1 1 '
R'P+ RP+ 5RP"+ (K — ) RP| &% =0 (2.73)
—_———
k2

c

Multiplying by a common factor leads to

9 /! R/ 9.9 /!
p§+p§+pkc+ 2 =0 (2.74)
~ ~
function of, function of ¢

Because the terms in this equation sum to a constant, yet each depends only on a single coordinate, each
term must be constant:

Pl/

5 ="k = P'HkP=0 (2.75)
so that
P(¢) = Aosin(kg¢) + Bo cos(ks¢) (2.76)
Using this result in (2.74) leads to
L §/+(2k2—k2)—0 (2.77)
p R p R p C ¢ - "
or
p*R" + pR' + (p"kZ — KGR =0 (2.78)

This is known aBBessel’s Differential Equation

Now, we could use the Method of Frobenius to solve this equation, but we would just be repeating a well-
known solution. The series you obtain from such a solution has very special properties (a lot like sine and
cosine: you may recall thain(z) andcos(z) are really just shorthand for power series that have special
properties).

The solution is
R(p) = CoJy, (kep) + DoNi, (kep) (2.79)
whereJ, (z) is the Bessel function of the first kind of ordeand NV, (z) is the Bessel function of the second
kind of orderv.
1. First, let's examing.

Ho(p, 6, 2) = [CoJi, (kep) + DoNi, (kep)] [Agsin(kgs) + Bocos(kod) e 7% (2.80)

Clearly, H.(p, ¢,z) = H.(p, ¢ + 2w¢, z) where/ is an integer. This can only be true,
wherer = integer.

H.(p,¢,2) = [CoJy(kep) + DoNy(kep)] [Ag sin(vg) + By cos(ve)] e 757 (2.81)
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2. It turns out thatV, (k.p) — —oo asp — 0. Clearly,p = 0 is in the domain of the waveguide.
Physically, however, we can't have infinite field intensity at this point. This leads us to conclude that
. We now have

H.(p, ¢, 2) = [Asin(vg) + B cos(v)] J, (kep)e (2.82)

3. The relative values afi and B have to do with the absolute coordinate frame we use to define the
waveguide. For example, let = F cos(v¢g) andB = —F'sin(v¢p) (you can find a value of and
oo to make this work). Then

Asin(v¢) + Bcos(vg) = Fsin [v(¢ — ¢o)] (2.83)

The value ofp, that makes this work can be thought of as terdinate referencér measuringp.
So, we really are left with finding’, which is simply the mode amplitude and is therefore determined
by the excitation.

4. We still need to determink.. The boundary condition that we can applyfig(a, ¢, z) = 0, where
p = a represents the waveguide boundary. Since

_ JjwpOH,
Ey(p, ¢,2) = 2 op (2.84)
y | »
= "kg“ [Asin(ve) + Beos(ve)] ke, (kep)e ™ (2.85)
where
J@) = 2 7,@) (2.86)
v - d,:E v 9 .

our boundary condition indicates th#}(k.a) = 0. So
./ _ Pun
ke.a = p,, — ke =—"2 (2.87)

wherep!,,, is thenth zero of.J) (z). Below is a table of a few of the zeros &f(x):

J(kca)=0 n=1 n=2 n=3

v=_0 0.0000 3.8317 7.0156
v=1 1.8412 5.3314 8.5363
v=2 3.0542 6.7061 9.9695

5. We have already definéd = k% — 32, so

/ 2
5=k - (p”"> (2.88)

a

Note that there is no¢” term here. However, the variation of the fields in the waveguide does
influences. (How?)

6. Cutoff frequency§ = 0): Sincek = k. = 27 f. ., /c at the mode cutoff frequency,

/
fc,un = izﬂ (289)

2T a
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7. Dominant Mode: We don't count the = 0, n = 1 mode (Tky;) sincep;; = 0 resulting in zero
fields. The dominant TE mode is therefore the mode with the smallest non-zero valyg which
is the TR mode.

8. The expressions for wavelength and phase velocity derived for the rectangular waveguide apply here

as well. However, you must use the proper value for the cutoff frequency in these expressions.

2.4.2 TM Modes

The derivation is the same except that we are solvingforWe can therefore write
E.(p,$,2) = [Asin(v) + B cos(ve)] J, (kep)e 7 (2.90)

Our boundary condition in this case#s (a, ¢, z) = 0 or J,(k.a) = 0. This leads to

_ Pvn

kea = pun — ke " (2.91)
wherep,,, is thenth zero ofJ, (x).
Jy(kea) =0 n=1 n=2 n=3
V= 2.4048 5.5201 8.6537
v=1 3.8317 7.0156 10.1735
v=2 51356 8.4172 11.6198
In this case, we have
2
B2 o= K- (pi) (2.92)
a
form = P (2.93)
’ 2T a

It becomes clear the the TEmode is the dominant overall mode of the waveguide.
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2.4.3 Bessel Functions

Here are some of the basic properties of Bessel functions:

4 7 (w)

dx"

whereZ is any Bessel function. Figures 2.6 and 2.7 show Bessel functions of the first and second kinds of

orders 0, 1, 2, 3.
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Figure 2.6: Bessel functions of the first kind.
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Figure 2.7: Bessel functions of the second kind.
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